COMBINED TECHNICAL SERVICES EXAMINATION (INTERVIEW POSTS) - II

COMPUTER BASED TEST

DATE OF EXAM: 18.11.2024 AN

PAPER - II - CHEMICAL ENGINEERING

(DEGREE STANDARD) (CODE: 405)

1.	Acco	ording to IPC the "THEF" mear	ns					
	(A)	Honest						
	(B)	Dishonest						
	(C)	Take any movable property with dishonest						
	(D)	All the above						
	(E)	Answer not known						
2.	Lan	guage of Court shall be						
	(A)	Court order	(2) Court within the state					
	(C)	Other than High Court	(D) All the above					
	(E)	Answer not known						
3.	Mor	al Communications						
	(A)	Proficiency						
	(B)	Clarifying						
	(C)	Consistent						
	(D)	To express moral views to oth	ners					
	(E)	Answer not known	•					
4.	Corp	porate Ethics obeys only to						
	(A)	Law of Corporate	(B) Ethics					
	9	Legalistic Strategies	(D) Indian Law					
	(E)	Answer not known						

5.		ethics make the engineers realize the importance ong them, in case of disagreement while applying	of tolerance
	(A)	Skills	
	(B)	Knowledge	
	(C)	Self regulation	
	(D)	Moral autonomy	
	(E)	Answer not known	4 - 2,
6.	The	main characteristics of engineer as managers are	
6.	The	main characteristics of engineer as managers are Promote an ethical climate	
6.	The (B)		
6.		Promote an ethical climate	
6.	(B)	Promote an ethical climate Not resolving conflicts	

7. Acceptable Risk

- (A) Risk are Job-Oriented
- (B) Risk are not Job-Oriented
- (C) Risk are non-acceptable
- (D) None of the above
- (E) Answer not known
- 8. Employee Right can be viewed by
 - (A) Criticism

(P) Privacy

(C) Respect

- (D) Work
- (E) Answer not known

	(A) E:	xecutive Authority	(B) Power
	(C) C	olleagues	(D) Support
	(E) A	nswer not known	
10.	Conflict	ting Interest means	
	W	hen a person has two o	r more desire that can't be satisfied
	(B) W	hen a person has desire	e to satisfied
	(C) · W	hen a person not have	desire to satisfied ·
	(D) N	one of the above	
	(E) A:	nswer not known	
11.	Importa	ant codes of Ethics are	•
	(A) O	ffering Inspiration	(B) Providing Guidance
	(C) P	rotecting the Public	(D) All of the above
	(E) A	nswer not known	
12.	Risk me	eans	
	(A) H	armful may occur	(B) Magnitude
•	(C) B	enefits	(D) Safely Escape
	(E) A	nswer not known	
13.	Who de	veloped virtue ethics?	
	(A) Je	eremy Bentham	(B) Immanual Kant
	(9) A	ristotle	(D) John Stuart Mill
	(E) A	nswer not known	

14.	Wha	nat is Business Ethics?	
·		The study of business situation where issues of right and wrong an	
	(B)	Defined as decision organisations considered right or wrong	make on issues that could be
	(C)	Ethics that can be applied to an or	ganisations practices
	(D)	Ethical processor, business situative where issues of right and wrong an	·
	(E)	Answer not known	
15.	Whi	ich of the following is a conflict simu	lation technique?
	(A)	Expansion of resources	
	(B)	Compromise	,
	(9)	Bringing in outsiders	
	(D)	Authoritative Command	
	(E)	Answer not known	
16.		nat element did Gilligan consider velopment after it was not fully addre	
	(A)	IQ differences (B)	Religious preferences
		Gender differences (D)	Geographic location
	(E)	Answer not known	
17.		nich of the following is not an Etlationship?	nical Principle of a Private

Loyalty

Truthfulness

Answer not known

(A)

·(C)

(E)

(B) Openness

(D) Responsibility

- The rules of ethics are also called as
 - (A) Rules

(D) Law

Responsibility (C)

- (D) Values
- **(E)** Answer not known
- Which of the virtue mentions that industry and society are an interactive system?
 - (A) Ethics

(B) Moral

(C) Work Ethics

- (D) Values
- (E) Answer not known
- 20. The ability to understand and share the feelings of another is called

7

Empathy

- (B) Sympathy
- Both (A) and (B)
- (D) None of the above
- Answer not known
- 21. Find the inverse of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$

- (D) $\begin{bmatrix} 3 & 1 & 1 \\ -3 & 3 & 1 \\ 4 & 4 & -2 \end{bmatrix}$
- (E) Answer not known

22.	If A^2	=A,	then	the	matrix	<i>A</i> i	s called
-----	----------	-----	------	-----	--------	------------	----------

Idempotent matrix

(B) Multiplication matrix

(C) Addition matrix

(D) Square matrix

(E) Answer not known

23. If all the elements of a matrix are zero, it is called a ______

(A) Null matrix

(B) Equal matrix

(C) Zero matrix

Both (A) and (C)

(E) Answer not known

24. _____ is the technique of estimating the value of a function for any intermediate value of the independent variable.

(A) Interpolation

(B) Elemental analysis.

(C) Integration

- (D) Method of analysis
- (E) Answer not known

25. The Eigen Values of the characteristic Polynomial $\lambda^6 - 4\lambda^5 - 12\lambda^4$ of a 6×6 Matrix are

(A) 1, 1, 1, 1, 6, -2

(P) 0, 0, 0, 0, 6, -2

(C) 1, 1, 0, 0, 6, -2

(D) .1, 0, -1, -6, 2

(E) Answer not known

26. If two Eigen values of $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ are 3 and 15, then the third

Eigen value is

(B) 1

(C) -1

- (D) 2
- (E) Answer not known
- 27. The integrating factor for the differential equation $\cos^2 x \cdot \frac{dy}{dx} + y = \tan x$ is _____.

(B) $\cos 2x$

(C) $e^{-\tan x}$

- (D) $\sin 2x$
- (E) Answer not known
- 28. The Eigen vector corresponding to the Eigen value $\lambda = 7$ for the matrix $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ is
 - (A) $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$

(B) $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$

(C) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$

- (E) Answer not known

- 29. Newton-Raphson iterative formula to find $\sqrt[K]{N}$ is
 - $(A) x_{n+1} = x_n [2 Nx_n]$
 - (B) $x_{n+1} = \frac{1}{2} \left[x_n + \frac{N}{x_n} \right]$
 - (C) $x_{n+1} = \frac{1}{2} \left[x_n + \frac{1}{Nx_n} \right]$
 - $(N) x_{n+1} = \frac{1}{K} \left[(K-1)x_n + \frac{N}{x_n^{K-1}} \right]$
 - (E) Answer not known
- 30. _____ method consists in diminution of the root of an equation by successive digits occurring in the roots.
 - (A) Bisection

(B) False Position

(C) Horner's

- (D) Linear
- (E) Answer not known
- 31. Modified form of Gauss elimination method is
 - (A) Gauss Section method
- (B) Sider-Date method
- Gauss-Jordan method
- (D) Newton-Raphson
- (E) Answer not known
- 32. ____ method consists in locating the root of the equation f(x) = 0 between 'a' and 'b'.
 - (A) Linear

B Bisection

(C) Non-linear

- (D) False position
- (E) Answer not known

33. Which one of the following is one dimensional heat flow equation?

(A)
$$C^2 = \frac{\partial u}{\partial t} \cdot \frac{\partial^2 u}{\partial x^2}$$

(B)
$$\frac{\partial^2 u}{\partial x^2} = C^2 \cdot \frac{\partial u}{\partial t}$$

$$\frac{\partial u}{\partial t} = C^2 \cdot \frac{\partial^2 u}{\partial x^2}$$

(D)
$$\frac{\partial^2 u}{\partial x^2} = C \cdot \frac{\partial u}{\partial t}$$

- (E) Answer not known
- 34. When n is a multiple of 3,

$$\int_{x_0}^{x_0+nh} f(x)dx = \frac{3h}{8}$$

$$[(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + \dots + y_{n-1}) + 2(y_3 + y_6 + y_{n-3})]$$

is known as

- (A) Trapezoidal rule
- Simpson's three-eighth rule
- (C) Newton-Cote's quadrature formula
- (D) Simpson's one-third rule
- (E) Answer not known
- 35. Evaluate $\Delta \tan^{-1} x$

$$\tan^{-1}\left[\frac{h}{1+hx+x^2}\right] .$$

(B)
$$\tan^{-1} \left[\frac{h}{x + hx^2 + x^3} \right]$$

(C)
$$\tan^{-1}\left[\frac{h^2}{1+hx+x^2}\right]$$

(D)
$$\tan^{-1} \left[\frac{2h}{1 + hx + x^2} \right]$$

(E) Answer not known

36. A function f(x,y) is said to be continuous at the point (a, b) if Lt f(x,y) exists and equal to

$$x \rightarrow a$$

$$y \rightarrow b$$

(A) f(a-b)

(B) f(a+b)

f(a,b)

- (D) $f(a^2, b^2)$
- (E) Answer not known
- . 37. The Eigen values of an idempotent matrix are
 - Either zero or unity
- (B) Either zero or ∞

(C) Either 1 or ∞

- (D) Either -1 or +1
- (E) Answer not known
- 38. A real matrix A is orthogonal if

$$(A) A = A^{-1}$$

(B)
$$A = A^T$$

(C)
$$A^2 = A^{-1}$$

$$\mathbf{D} A^{-1} = A^T$$

- (E) Answer not known
- 39. An orthogonal set of vectors are always _____
 - (A) linearly symmetric
- (B) linearly non-symmetric
- (C) linearly dependent
- (D) linearly independent
- (E) Answer not known

40.	The product of the Eigen values of a matrix A is equal to					
	(A)	0	(B) 1			
	(9)	A	(D) A^{-1}			
	(E)	Answer not known				
41.	The	basis of reverse osmosis is	.			
	(A)	Osmotic Pressure is great	er than the hydrostatic pressure			
	(B)	Osmotic pressure is equal	to the hydrostatic pressure			
	(C)	Hydrostatic pressure is gr	reater than the osmotic pressure			
	(D)	Osmotic pressure does no	t exist			
	(E)	Answer not known				
42.			vice that utilize the properties of a ency of reactions.			
	(A)	Physical	(P) Chemical			
	(C)	Steady State	(D) Adiabatic			
	(E)	Answer not known				
43.	In P	ervaporation units are com	monly used modules are,			
	(i)	Flat sheet and Spiral wou	nd modules.			
	(ii)	Rough sheet and Spiral w	ound modules.			
	(iii)	Round sheet and Spiral w	ound modules.			
	(A)	Only (i)	(B) Only (ii)			
	(C)	Only (ii) and (iii)	(D) Only (i) and (iii)			
	(E)	Answer not known				

44.	. The diffusivity D is the property of the system, dependent upon			
	(i) (ii) (iii)	Temperature Pressure Nature of the components	Fig. 4	
	(A) (C) (E)	Only (i) Only (i), (ii) and (iii) Answer not known	(B) Only (ii) (D) Only (i) and (ii)	
45 .		mic Membranes have an advance following	antage over polymer membra	nes
	(A) (C) (D) (E)	Chemically inert and stable at Chemically inert and stable at Highly reactive with temperat Highly reactive with pressure Answer not known	t high temperature	
46.	With perm (A) (C) (E)	a asymmetric membranes of neation of liquids occurs by a so Distillation mechanism Dialysis process Answer not known	or dense polymer membrandution (B) Extraction process (D) Diffusion mechanism	nes

- 47. In distillation column, minimum number of plates required for a given separation may be found by constructing steps on an XY diagram between compositions x_D and x_B .
 - Using the 45° line as the operating line for both section of the column.
 - (B) Using the 30° line as the operating line.
 - (C) Using the 60° line as the operating line.
 - (D) Using the 15° line as the operating line.
 - (E) Answer not known
- 48. An electromotive force is applied across the membrane to assist in the diffusion of charged particles, the operation is,
 - (A) Reverse osmosis

Electrodialysis

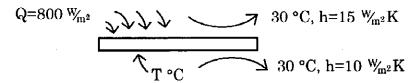
- (C) Ion Exchange process
- (D) Dialysis process
- (E) Answer not known
- 49. In distillation where q is defined as the moles of liquid flow in the stripping section per mole of feed introduced, for saturated liquid feed,
 - (A) q > 1

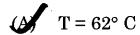
(B) q < 1

(G) q = 1

- (D) q = 0
- (E) Answer not known

50.	und	is a separation process liquid mixture diffuse througher low pressure on the down num pump.	a se	
	(A)	Dialysis	(P)	Pervaporation
	(C)	Reverse osmosis		Osmosis
	(E)	Answer not known		·
51.	•	ing of gases is often carried o a gel, alumina or other inorgan		
	(A)	Absorbing	(B)	Adsorbing
	(C)	Desorbing	(D)	Drying
_	(E)	Answer not known		·
52.		he fractional distillation, the our raising in the section above		-
	(4)	Rectifying section	(B)	Stripping section
	(C)	Reboiler section	(D)	Condenser section
	(E)	Answer not known		
53.		he reverse osmosis process, de orcing water at high pressure, t		. —
		Semi permeable membrane		:
	(B)	Permeable membrane	•	
	(C)	Filters		
	(D)	Membrane filters		
	(E)	Answer not known		


54.		exhausted cation exchanger of	column is regenerated by passing	g a
		Diluted HCl	(B) Diluted NaCl	
	(C)	Concentrated HCl	(D) Concentrated NaCl	
	(E)	Answer not known		
55.	In D	Dialysis process, the driving for	rce is	
	(A)	Temperature	(B) Inertia force	
	C	Chemical potential	(D) Pressure	
	(E)	Answer not known		
56.		operation of Ion Exchange sed downward through the bed	rs, the feed solution is norma d at a flow rate of	lly
	(A)	1 to 5 gal/min.ft ² (1 gpm/ft ² =	= 0.67 ft/min)	
	(B)	0.5 to 1 gal/min.ft ²		
	(C)	1 to 2 gal/min.ft ²		
	(D)	2 to 5 gal/min.ft ²		
	(E)	Answer not known		
57.		absorption of a very soluble and interface would be	gas, the mole fraction in the liqu	ıid
		Greater than	(B) Less than	
	(C)	Equal to	(D) Not equal to	
	(E)	Answer not known	· · · · · · · · · · · · · · · · · · ·	


		· · · · · · · · · · · · · · · · · · ·					
58.		Absorption followed by it reaction in the liquid phase is often used to get more complete removal of a					
		Solute from a gas mixture	(B) Solvent mixture				
	(C)	Saturated gas	(D) Unsaturated gas mixture				
	(E)	Answer not known					
59.		en pore size is much smaller diffusion process is called	than the normal mean free path,				
	A	Knudsen diffusion	(B) Eddy diffusion				
	(C)	·Molecule diffusion	(D) Molar diffusion				
	(E)	Answer not known					
60.		diffusion coefficient for dilutal	te solutions of completely ionized				
	(A)	Wilke-Chang equation					
	(B)	Chapman-Enskog equation					
		Nernst equation					
	(D)	Lennard Jones potential					
	(E)	Answer not known					
61:		bubbling fluidized bed reactor ven conversion.	r requires to achieve				
	(A)	More catalyst than a fixed be	ed reactor				
	(B)	Less catalyst then a fixed be	d reactor				
	(C)	Equal amount of catalyst as	that of fixed bed reactor				
	(D)	No catalyst					
	(E)	Answer not known					

62.	Darcy-Weisbach formula is given as $h_f =$						
	(A)	$4f^2LV/D\times 2g$	(B) $4fL^2V/D\times 2g$				
	C	$4fLV^2/D \times 2g$	(D) $4fL^2V^2/D\times 2g$				
	(E)	Answer not know	vn				
63.	_	Hagen-Poiseuille equation predicts volumetric flow rate to be proportional to for laminar flow in pipe.					
	(A)	R	(B) R^2				
	()	R^4	. (D) $R^{0.5}$				
	(E)	Answer not know	⁄n				
64.	Pascal's Law states as, the intensity of pressure at any point in a liquid at rest is						
	(M)	Same in all direc	tions				
	(B)	Different in all directions					
	(C)	Zero pressure					
	(D)	High pressure					
	(E)	Answer not know	/n				
65.	The	critical thickness	of insulation for sphere, rC_r				
	(A)	k/h	(B) $4 k/h$				
	(3)	2 k/h	(D) $2 h/k$				
	(E)	Answer not know	vn				

62.

66. A steel plate is exposed to solar heat flux of 800 W/m^2 on one side. The plate is exposed to Air at 30°C on both sides. The convection coefficients are 10 W/m^2 K on the back side and 15 W/m^2 K on the front. Determine the equilibrium temperature. Neglect Radiation loss.

(B)
$$T = 72^{\circ} C$$

(C)
$$T = 82^{\circ} C$$

(D)
$$T = 52^{\circ} C$$

(E) Answer not known

67. The product of Reynolds number and Prandtl number is ____

(A) Graetz number

Peclet number

- (C) Schmidt number
- (D) Sherwood number
- (E) Answer not known

68. Kinematic Viscosity is defined as the ratio between the dynamic velocity and _____.

(A) Viscosity of fluid

Density of fluid

- (C) Specific gravity of fluid
- (D) None of the above
- (E) Answer not known

69.	Jet o	condensors is an example of		
		Context heat exchangers		
	(B)	Recuperator heat exchangers		
	(C)	Regenerative heat exchanger	s	
	(D)	Plate type heat exchangers		
	(E)	Answer not known	·	
70.	The	economy of Single Effect evapo	orato	ris
		Nearly less than one	(B)	Greater than one
	(C)	One ·	(D)	Zero ·
	(E)	Answer not known		
71.	2-4 s	shell and tube heat exchanger	mean	s ·
	(A)	4 shell side pass 2 tube side p	oass	
	P	2 shell side pass 4 tube side p	oass	
	(C)	2 shell side pass 2 tube side p	ass	
	(D)	4 shell side pass 4 tube side p	ass	
	(E)	Answer not known		
72. _.	The	Louis of black body radiation i	s the	
	(A)	Stefan-boltzmann law	(B)	Fourier law
	(C)	Focks law	(D)	None of the above
	(E)	Answer not known		

73.	In H	In Heat Exchanger, a better recovery can be obtained by adding a						
	(A)	Horizontal baffle	(B)	Vertical baffle				
	C	Longitudinal baffle	(D)	Baffle				
	(E)	Answer not known						
74.		hell and tube condenser to ob sfer coefficient and shorter tub						
	(A)	Exchanger	(P)	Heat Exchanger				
	(C)	Dryer	(D)	Evaporation				
	(E)	Answer not known	•	• ·				
75.	Buo	yancy force exist in						
		Forced Convection	(B)	Natural Convection .				
	(C)	Convection	(D)	Air velocity				
	(E)	Answer not known						
76.	In a	Jacket design of a Agitated Ve	ssel (of Heat transfer has				
		Spiral baffles	(B)	Baffles				
	(C)	Jacketed baffle	(D)	None of the above				
	(E)	Answer not known		•				
77.	A Piezometer tube is suitable for measuring							
٠	(A)	Negative pressure	(E)	Gauge pressure				
	(C)	Absolute pressure	(D)	Atmospheric pressure				
	(E)	Answer not known						

78.	Match	correctly	the o	classifica	ition of	fluids	with	their	example	es :
-----	-------	-----------	-------	------------	----------	--------	------	-------	---------	------

- (a) Newtonian fluid
- **Paint** 1.
- (b) Non-Newtonian fluid
- 2. Imaginary fluid
- (c) Ideal fluid
- Lubricating oil 3.

(d) Real fluid

Water 4.

- (A) 2 3
- 1
- (B) 2
- 3
- (C) 4
- 2 1
- (D) 3
- 3 1 .2
- . 4 (E) Answer not known
- Determine the bulk modulus of elasticity of a liquid, if the pressure 79. of the liquid is increased from 70 N/cm² to 130 N/cm². The volume of the liquid decreases by 0.15 percent.
 - (A) 4 N/cm²

(B) $4 \times 10^3 \text{ N/cm}^2$

(C) $4 \times 10^5 \text{ N/cm}^2$

- $(D)^4 \times 10^4 \text{ N/cm}^2$
- Answer not known **(E)**

80. Bernoulli's Equation mathematically is expressed as

$$(A) \frac{P}{w} + \frac{V^2}{2g} + Z = Constant$$

(B)
$$\frac{P}{w^2} + \frac{V}{2g} + Z = \text{Constant}$$

(C)
$$\frac{P^2}{w} + \frac{V}{2g} + Z = \text{Constant}$$

(D)
$$\frac{P}{w^2} + \frac{V^2}{2g} + Z = \text{Constant}$$

- (E) Answer not known
- 81. Ferritic stainless steel is characterized is
 - (A) a simple hexagonal crystal structure
 - (P) a body-centred cubic crystal structure
 - (C) a face-centred cubic crystal structure
 - (D) an ortho rhombic crystal structure
 - (E) Answer not known
- 82. In martensitic stainless steel, the difference between the chromium percentage and seventeen times the carbon content is
 - (A) Less than 12.5%

- (B) Greater than 12.5%
- (C) Greater than 24%
- (D) Less than 18%
- (E) Answer not known

83.	The total carbon content in pig iron may be						
	(A)	0.08 to 0.2%	(B) 0.1 to 1.5%				
	(C)	3.0 to 5%	(D) 16 to 24%				
	(E)	Answer not known	·				
84.	Geri	man silver is an alloy of coppe	r, nickel and				
	A	Zinc	(B) Silver				
	(C)	Tin	(D) Lead				
	(E)	Answer not known					
85.	Corrosion resisting chromium-nickel steels contain						
		16-24% Cr, 7-12% Ni, 1.5-2.0% Mn					
	(B)	. 35-36% Cr, 1.5-2.0% Ni, 8-14% Mn					
	(C)	7-12% Cr, 1.5-2.0% Ni, 16-24% Mn					
	(D)	1.5-2.0% Cr, 7-12% Ni, 16-24% Mn					
	(E)	Answer not known	••				
86.	Nano materials are thermodynamically unstable in initial state of synthesis because						
	A	Large surface energy	(B) Reduced Gibbs energy				
	(C)	Increased internal stress	(D) Less surface energy				
	(E)	Answer not known					
87.	Nan	o materials confined in all thr	ree dimensions are termed as				
	(A)	Nano rods	(B) Nano tube				
	(C)	Nano wall	(D) Quantum dot				
	(E)	Answer not known					

- 88. The composite materials composed of cermic and metal is called as
 - (A) Non linear composites

- (C) Particulate process
- (D) Linear compositer
- (E) Answer not known
- 89. For a given impeller, K and β_2 are related by the equation
 - (A) $\tan \beta_2 = \sqrt{\frac{2k}{1+k}}$
- (B) $\tan \beta_2 = \sqrt{\frac{k}{1+k}}$
- (C) $\tan \beta_2 = \sqrt{\frac{1-k}{2k}}$

- $\text{(D) } \tan \beta_2 = \sqrt{\frac{2k}{1-k}}$
- (E) Answer not known
- 90. In differential settling method, the particles are separated based on their
 - (A) differences in size
- (B) differences in mass
- differences in density
- (D) differences in volume
- (E) Answer not known
- 91. The separation factor of a cyclone 0.5 m in diameter and having a tangential velocity of 20 m/s near the wall is (g is acceleration due to gravity in m/s²)
 - (A) 1600/g

(B) 800/g

(C) g/1600

- (D) g/800
- (E) Answer not known

92.	The Tyler Standard screen series is based on the opening of the 200-mesh screen, which is accepted at						
	(A)	0.074 mm	(B) 0.74 mm				
	(C)	0.0074 mm	(D) 7.4 mm				
	(E)	Answer not known					
93.	20 m	esh screen means					
		20 openings per linear inch					
•	(B)	20 openings per linear cm					
	(C)	20 openings per square inch					
	(D)	20 openings per square cm					
	(E)	Answer not known					
94.	•	long distance transportati ular/irregular shape/fine n eyor is					
	(A)	Bucket	(P) Belt				
	(C)	Screw	(D) Apron				
	(E)	Answer not known					
95.	are non metallic organic substances, which are brittle and have good thermal and electrical insulation properties.						
		Ceramics and glasses	(B) Metal and alloys				
	(C)	Organic polymers	(D) None of the above				
	(E)	Answer not known					

96.		ch one of the following steer a low magnification?	ructure is	s examined with naked eye	e oi		
		Crystal structure	P	Macro structure			
	•	Nuclear structure	(D)) Electronic structure			
	(E)	Answer not known	, ,				
97.	hour		to reduces through	tergy requirement in kilov ce a very large feed to suc h screen.) 50 µm			
		100 μm	(D)) 1000 μm			
	(E)	Answer not known					
98.	For	a non-spherical particle, t	he spheric	city is defined as			
	(AX	$6/D_P$	/D\	S_P/V_P			
		$\overline{S_P/V_P}$	(D)) $rac{S_P/V_P}{6/D_P}$			
	(C)	$rac{6/D_P}{S_P/V_P} \ rac{V_P/S_P}{D_P/6}$	(D)) $\frac{6 S_P}{V_P \cdot D_P}$	•		
	(E)	Answer not known					
	Where						
	D_P =	D_P = Nominal diameter of particle					
	$S_P =$	S_P = Surface area of one particle					
	$V_P =$	Volume of one particle					
99.	For Laminar flow conditions, the relationship between the Pressur drop (ΔP) across an incompressible filter cake and the surface are per unit volume of particles (S_0) of the particles being filtered is given by one of the following (A) ΔP is proportional to S_0						
	(B)	ΔP is proportional to ${S_0}^2$	2 .				
	(C)	$\Delta ext{P}$ is proportional to $rac{1}{S_0}$					
	(D)	$\Delta ext{P} ext{ is proportional to } rac{1}{S_0}$					

(E)

Answer not known

100.	Statement 1:		Grinding laws the creation of		ed on the energy required for face area.		
	State	ement 2 :	energy requir	ed per	ed on the principle that the unit area of the surface is the size of the particle.		
	(A)	True, Fals	e	B	True, True		
	(C)	False, Fals	se	(D)	False, True		
	(E)	Answer no	ot known				
101.		The suspended solids concentration present in a sample of water are measured by					
	(A)	Volumetri	c method	(B)	Calorimetric method		
	(0)	Gravimetr	ric method	(D)	pH Scale		
	(E)	Answer no	ot known	•			
102.	POP	is					
	(A)	A) Persistent Oxidizing Pollutants					
	(B)	Permanent Organic Pesticides					
	(C)	Persistent Organic Pesticides					
	(D)	Persistent Organic Pollutants					
•	(E)	Answer no	ot known				
103.	Glob	Global Atmospheric Temperatures are likely to be increased due to					
	W	Burning o	f Fossil Fuels	(B)	Water Pollution		
	(C)	Soil Erosio	on	(D)	Poor Regulations		
	(E)	Answer no	ot known		·		

104.	The healt		important	environn	nental	issue	threate	ning	human
	(A)	Noise	pollution		P	Ozone	layer de	pletio	n
	(C)	Acid r	-		(D)		ne rain		
	(E)		er not knowi	n	` '				
105.	_	rohibite	ed waste LDR.	should n	ot be	dispos	sed on		
	A	Land			(B)	Air			
	(C)	Water			(D)	Facilit	y -		
	(E)	Answe	er not knowi	n					
106.	WAP	compl	y requireme	nt under	law				:.
•	(A)	SARA	•	•	(B)	CERC	LA		•
	0	RCRA	L		(D)	HAP			
	(E)	Answe	er not knowi	n					
107.	The purpose of a safety training program is								
	(A)	To educate workers about potential hazards							
	(D)	To identify potential hazards in work place							
	(C)	•	rease worke	•		7			•
	(D)		prove the qu	_	-	ts			
	(F)	_	on not known	•					


108.		n distribution in Engineering e is based on	syste	m classification of hazardous		
	(A)	Solvents	(B)	Heavy metals		
		Phase	(D)	Treatability		
	(E)	Answer not known				
109.	Cher			d Oxidation Process) with their overall		
	(A).	Decrease .	(B)	Remains constant		
		Increase	(D)	No effect		
	(E)	Answer not known				
110:	Alum as a coagulant is found to be more effective when pH range of water is					
	(4)	6-8	(B)	7-9		
	(C)	5-7	(D)	3-5		
	(E)	Answer not known				
111.	The	term used for the reuse of sew	age s	ludge is		
•		Bio solids	(B)	Potential solids		
	(C)	Manure	(D)	Solids		
,	(E)	Answer not known				
112.		comes under the che	mical	monitoring of the lake.		
		Detergents	(B)	Pathogens		
	(C)	Conductivity		Turbidity		
	(E)	Answer not known	, ,			

113.	How	often should EAP drills be	conducted in Orgai	nizations?			
	(A)	Monthly	Annually				
	(C)	Biannually	(D) Weekly				
	(E)	Answer not known		•			
114.	Can	an EAP be modified and up	dated?				
	(A) _	No, it should remain unch	anged				
	(B)	Yes, it should be reviewed	and updated regul	arly			
	(C)	Only once every decade					
•	(D)	Only when a major emerge	ency occurs	•			
	(E)	Answer not known					
115.	According to Heinrich's triangle what happen before a serious accident (or) injury occurs?						
	(4)	Several Unsafe behaviors	and near misses	1.			
	(B)	Managerial investigations					
	(C)	Work reports of safety cond	cerns	·			
•	(D)	Safety training	•	•			
	(E)	Answer not known					
116.	"Fug	ritive dust" includes		,			
	(A)	Pollens					
	(B)	Wind blown dust		-			
	(C)	Dust from Industrial Proce	esses				
	(D)	All of the above					
	(E)	Answer not known					

The primary goal of Industrial safety is							
A	To reduce the risk of accidents	and injuries in the work place					
(B)	To maximize profits for the con	npany					
(C)	To increase worker productivity	у					
(D)	To improve the quality of produ	acts					
(E)	Answer not known						
	colour is used for radia	tion hazard.					
(A)	Red	(B) Orange					
(C)	Green	Purple ·					
(E)	Answer not known						
Psychosocial hazards arise from the workers failure to adapt to							
(A)	Mechanical causes						
(B)	An Alien Psychosocial Environi	ment					
(C)	Cessation						
(D)	Pneumoconiosis						
(E)	Answer not known	•					
	-	is concerned with health and					
(A)	Co-workers	(B) Family members					
(C)	Employees	(D) All of the above					
(E)	Answer not known						
	(B) (C) (D) (E) (A) (C) (E) (A) (C) (D) (E) (A) (C) (C) (D) (E)	(A) To reduce the risk of accidents (B) To maximize profits for the com (C) To increase worker productivity (D) To improve the quality of production of the compact of the					

121.	Name the type of reactors take long chain hydrocarbons and crack them to produce a shorter chain hydrocarbons							
	(A)	FCC	(B) BFB					
	(C)	CFB	(D) All of the above					
	(E)	Answer not known						
122.		The Emulsion stays at minimum fluidization conditions in K-L model for BFB, the relative Gas-solid velocity should be						
٠		Stay constant	(B) Increases					
•	(C)	Decreases ·	(D) None of the above					
	(E)	Answer not known						
123.	Fluidized Catalyst cracking reactor are also called as							
	(A)	CAT	(B) Crackers					
	(0)	CAT Crackers	(D) CAT Reactors					
	(E)	Answer not known						
124.	In the deactivation catalyst steps, an impurity in the feed may deposit on and deactivate the surface is called							
	(A)	Parallel Deactivation						
	(B)	Series Deactivation	•					
	(0)	Side by side Deactivation						
	(D)	Parallel and Series Deactivati	on					
	(E) Answer not known							

125. The activity of a Catalyst pellets of any time is defined as

- (B) $\frac{-V_A^1}{-V^1}$
- (C) $\frac{V_A^1}{V_{A0}^1}$
- (D) $\frac{-V_A^1}{VA_0}$
- (E) Answer not known
- 126. Restoration of Catalyst activity is called as
 - (A) Reactivation

(B) Deactivation

(C) Poison

- (D) Uniform
- (E) Answer not known
- 127. The effectiveness of solid catalyst for the reaction of stable molecules is dependent on

35

Chemisorption

(B) Adsorption

(C) Absorption

- (D) Diffusion
- (E) Answer not known

128.	In solid catalysed reactions the diffusional effects are more lightly to affect the over all rate of reaction for						
	(A)	Fast reactions in catalyst of small pore diameter					
	(B)	Fast reactions in catalyst of	of large pore diameter				
	(3)	Slow reaction in catalyst of	f small pore diameter				
	(D)	Slow reaction in catalyst of	f large pore diameter				
	(E)	Answer not known					
129.	The	unit for first order reaction	rate constant is				
	(4)	Time-1	(B) Moles litre-1				
	(C)	Litre moles ⁻¹	(D) Moles litre ⁻¹ time ⁻¹				
	(E)	Answer not known					
130.	The dispersion model may be used for reactors.						
	(A)	Ideal tubular	(P) Non-ideal tubular				
	(C)	Ideal CSTR	(D) Non-ideal CSTR				
	(E)	Answer not known					
131.	List	the metabolic product in gly	vcolysis				
	A.	Acetic acid	(B) Ester				
	(C)	Resin	(D) Polymers				
	(E)	Answer not known	·.				
132.	Kinetics of solids catalysed reaction can be studied in a reactor						
	(A)	Mixed	(B) Homogeneous				
	(C)	Separated	(D) Normal				
	(E)	Answer not known					

36

405-Chemical Engineering

133.	Back mixing is most predominant in		
	(A)	A well stirred batch reactor	(B) A PFR
	(C)	CSTR connected in series	A single CSTR
	(E)	Answer not known	
134.	Performance of a cascade CSTR can be improved by adding		
	(A)	More CSTR in parallel	(P) More CSTR in series
	(C)	APF reactor in series	(D) APF reactor in parallel
•	(E)	Answer not known	•
135.	In pore diffusion, shell thickens with time and the deactivation front moves inward, we call this the ———————————————————————————————————		
		Shell model	(B) Care model
	(C)	Pellet model	(D) Interior model
	(E)	Answer not known	
136.	Which parameter alter the conversion of a tubular reactor?		
	(A)	Time	(B) Speed
	(D)	Temperature	(D) Rate
	(E)	Answer not known	
137.	The rate constant of a first order reaction depend on the		
	(16)	Temperature	(B) Concentration
	(C)	Time	(D) Pressure
	(E)	Answer not known	

138.		omogenous systems, the voluce ical to	ume	oi •	Huid	ın	the	reactor	ıs
	(A)	Moles of fluid	(B)	Vol	ume c	of re	actoi	•	
	(C)	Molecular weight of fluid	(D)	Pre	essure	and	l tem	peratur	e
	(E)	Answer not known							
139.		eactions in which the rat hiometric equation are called	e e	qua [.]	tion	cori	espo	nds to	a
	(A)	Non-elementary reactions	P	Ele	menta	ary	react	ions	
	(C)	Multiple reactions ·	(D)	Ser	ies re	acti	ons	•	
	(E)	Answer not known							
140.	The ratio of volume of particles to the volume of reactor is called as								
	(A)	Solid holdup	(P)	Sol	id loa	ding	5	•	
	(C)	Liquid holdup	(D)	Liq	uid lo	adi	ng		
	(E)	Answer not known							
141.		closed-loop response of a syste ach the desired value for the fir						e respo	nse
	(A)	Settling time	(B)	De	cay ra	tio			
		Rise time	(D)	De	lay tin	ne	•		
	(E)	Answer not known							

- 142. Consider the following statements regarding negative feed back in a closed loop system
 (1) It increases sensitivity
 (2) It minimize the effect of disturbance
 - (3) There is a possibility of instability
 - (4) It improves the transient response
 - (A) 1, 3 and 4 are correct (P) 1, 2 and 4 are correct
 - (C) 1, 2 and 3 are correct (D) 2, 3 and 4 are correct
 - (E) Answer not known
- 143. Multiplication of magnitude can be converted in to addition in which of the following?
 - (A) Nyquist plot(B) Nichols plot(D) Quasi chart
 - (D) Quasi C
 - (E) Answer not known
- 144. Which one of the following statements is true for gain margin and phase margin of two closed loop systems having loop transfer functions G(S) and e^{-S} G(S) H(S)?
 - (A) Both gain and phase margin of two systems will be Identical
 - (B) Both gain and phase margin of G(S) H(S) will be more
 - Gain margin of two system are same but phase margin of G(S) H(S) will be less
 - (D) Phase margin of two systems are the same but gain margin of G(S) H(S) will be less
 - (E) Answer not known

- 145. A quantity whose magnitude has a definite repeating time cycle is called
 - (A) Transient

(E) Steady state periodic

- (C) Steady state aperiodic
- (D) Transient state periodic
- (E) Answer not known
- 146. The Transfer Function of a system is $G(S) = \frac{100e^{-St}}{S(S+10)}$ then the system is a
 - (A) Linear system

- (B) Non-linear system
- (C) Transportation lay
- (D) Steady state system
- (E) Answer not known
- 147. The expected value of the voltage across a resistor is 90 V, however the measurement gives a value of 89 V. Calculate absolute error
 - (A) 4 V

(B) 3 V

(C) 1 V

- (D) 9 V
- (E) Answer not known
- 148. A mercury thermometer having a time constant of 0.1 min placed in temperature bath at 100°F and allowed to come to equilibrium with the bath at time t=0. The temperature of the bath begins to vary sinusoidly about its average temperature of 100°F with an amplitude of 2°F. if the frequency of oscillation is 2°F if the frequency of oscillation is $10/\pi$ cycle/min. Find the radiation frequency.
 - (A) 33 rad/min

(B) 40 rad/min

(C 20 rad/min

- (D) 10 rad/min
- (E) Answer not known

149.		———— control configuratio	n ha	ve one manipulated variable
	and	more than one measurement.	•	
	(A)	Split -range	(B)	Selective
		Cascade	(D)	Adaptive
	(E)	Answer not known		
150.	Amo offse	ng the type of control, —— t.		—— is used eliminate any
	(A)	Derivative	(B)	Integral
	(C)	Proportional .	(D)	Proportional – Derivative
	(E)	Answer not known		
151.	The	nature of roots of over damped	syste	em is
	(A)	Complex	(B)	Řeal
	(C)	Unequal	(D)	Real and unequal
	(E)	Answer not known		
152.		T ₁ value for PID controller roller settings	acco	ording to Ziegler - Nicholes
	(A) .	$\frac{\rho u}{8}$	(B)	$\frac{2\rho u}{2}$
	(C)	$\frac{\rho u}{4}$	(D)	$\frac{\rho u}{6}$
	(E)	Answer not known		

153. For the following given data calculate the arithmetic mean

$$X_1 = 49.7$$

$$X_2 = 50.1$$

$$X_3 = 50.2$$

$$X_4 = 49.6$$

$$X_5 = 49.7$$

- (A) 59.7
- (C) 43.2
- (E) Answer not known

- 154. Find the general solution of y'' y' + 12y = 0
 - $C_1e^{4x} + C_2e^{-3x}$

(C) $C_2 e^{-3x}$

- (D) $C_1 e^{-4x} + C_2 e^{3x}$
- Answer not known **(E)**
- 155. Solutions of simultaneous non linear equation can be obtained using
 - (A) Method of iteration
- (P) Newton Raphson method

(C) Power method

- (D) Partition method
- (E) Answer not known
- 156. The command input for a regulator becomes a constant is called as
 - Controlled variable (A)
- (B) Manipulated variable

Set point

- (D) Load variable
- (E) Answer not known

4 F M	A 3*: 3 :			, ,
15/	Amplitude rat	ነስ ስተ	transportation	190 19
101.	Impirodac ide	10 01	or arropor vactors	+45 +2

(A) 0.1

(B) 100

(C) 10

- **V** 1
- (E) Answer not known
- 158. Dynamic system characterization by a transfer function can be done only for the ———— system.
 - (A) Cubic

(B) Quadratic

(C) Linear

- (D) Polynominal
- (E) Answer not known
- 159. Laplace transform of $\cosh(at)$ is

(A)
$$\frac{s}{s^2 + a^2}$$

$$\frac{s}{s^2 - a^2}$$

(C) $\frac{1}{s^2}$

- (D) $\frac{1}{a^2}$
- (E) Answer not known
- 160. A current in a circuit in S domain is given by $l(S) = \frac{100}{S(S^2 + 10S + 20)}.$ What will be the final value of the current?
 - (A) 10 amp

(B) 15 amp

(C) 20 amp

- **5** amp
- (E) Answer not known

- 161. The refractive index of naphthas varies
 - (A) Inversely with both wave length and temperature
 - (B) Directly with both wave length and temperature
 - (C) Inversely with wave lengths and directly with temperature
 - (D) Directly with wave lengths and inversely with temperature
 - (E) Answer not known
- 162. The modulus of elasticity of ceramics has a range of
 - (A) $8 \times 10^4 \text{ to } 40 \times 10^4 \text{ N/mm}^2$
 - (P) $7 \times 10^4 \text{ to } 42 \times 10^4 \text{ N/mm}^2$
 - (C) $7 \times 10^4 \text{ to } 45 \times 10^4 \text{ N/mm}^2$
 - (D) 10×10^4 to 42×10^4 N/mm²
 - (E) Answer not known
- 163. Clinker is the mass obtained by heating
 - (A) Powdered limestone and clay
 - (B) Gypsum
 - (C) Dolomite
 - (D) Sand, limestone and washing soda
 - (E) Answer not known
- 164. Mixed Fertilizer contain three principle elements (Nitrogen, Phosphorous and Potassium) 5-10-5 mixed fertilizer contains
 - (A) 5 wt% P₂O₅, 10% N, 5% K₂O
 - (B) 5 wt% N, 10% P₂O₅, 5% K₂O
 - (C) 5 wt% N, P₂O₅ 10%, 5% K₂O
 - (D) 10 wt N, 10% P₂O₅, 5% K₂O
 - (E) Answer not known

LOO.	Built	aric acid mandiacture by	
	(A)	Wet-process	
	B	Double absorption contact pro	cess
	(C)	Electric-Furnace process	
	(D)	Steaming-out process	
	(E)	Answer not known	
166.	conve	type of energy receive erted directly or indirectly into	ed in the form of radiation, can be other forms of energy.
	W	Solar energy ·	(B) Thermal energy
	(C)	Tidal energy	(D) Wind energy
	(E)	Answer not known	
167.		mum temperature required for er plant?	r operating ocean thermal energy
	(A)	50°C	20°C
	(C)	30°C	(D) 10°C
	(E)	Answer not known	
168.	Prop	eller type windmill runs at spe	eds of
	(A)	60 to 80 rpm	(B) 100 to 140 rpm
	(C)	200 to 300 rpm	(D) 300 to 400 rpm
	(E)	Answer not known	
		•	•

- 169. In solar ponds operating in a sunny climate, salt (NaCl) is transported from non convective layer into upper convective layer at a rate of the order of
 - (A) $40 \text{ kg/m}^2 \text{ year}$ (or) $40 \text{ kg m}^{-2} \text{ year}^{-1}$
 - 40 kg/m² month (or) 40 kg m⁻² month⁻¹
 - (C) 40 kg/m²day (or) 40 kg m⁻² day⁻¹
 - (D) 40 kg/m² hour (or) 40 kg m⁻² hour⁻¹
 - (E) Answer not known
- 170. If $\cdot_{92} U^{238}$ emits one alpha particle, the remaining nucleus will contain
 - (A) 234 neutrons and 90 protons
 - (B) 236 neutrons + 88 protons
 - 144 neutrons + 90 protons
 - (D) 145 neutrons and 93 protons
 - (E) Answer not known
- 171. Glucose is converted into ethyl alcohol and CO₂ by the enzyme
 - (A) Invertase

Zymase

(C) Maltase

- (D) Diastase
- (E) Answer not known
- 172. List out the correct sequence of making dyes and intermediates A Petroleum, B Aromatic hydrocarbons, C Intermediates, D-dyes
 - $A \to B \to C \to D$

(B) $A \rightarrow D \rightarrow C - B$

(C) $C \rightarrow A - B - D$

- (D) $D \rightarrow A \rightarrow B C$
- (E) Answer not known

173.	An A	An Alkali metal salt of palmitic acid is known as				
	W	Soap	(B)	Alkolid		
	(C)	Explosive	(D)	Detergent		
	(E)	Answer not known				
				,		
174.	The proce	material used as fat split	ting	catalyst in saponification		
	(A)	Zinc oxide	(B)	Palm oil		
	(C)	Coconut oil	(D)	Tallow		
	(E)	Answer not known		•		
175.	The	factor adversely affecting the fe	erme	ntation process is		
	(A)	Low concentration	P	High concentration		
	(C)	Presence of ammonium salts	(D)	Presence of air		
	(E)	Answer not known				
176.		the chemical energy storage	e sy	stem, the main chemical		
	(4)	Hydrogen	(B)	Carbon		
	(C)	Nitrogen	(D)	Sulphur		
•	(E)	Answer not known		•		
177.		th type of thermal energy storage?	stora	ige system is employed as		
		Packed solid beds	(B)	Gas pipelines		
	(C)	Nuclear reactors	(D)	Thermal power reactors		
	(E)	Answer not known				
	•					

178.	Among, which type of batteries is called as Metal-Gas batteries?						
	W	Nickel - Hydrogen	(B)	Nickel - Zinc			
	(C)	Nickel - Iron	(D)	Silver - Cadmium			
	(E)	Answer not known					
179.	The maximum theoretical energy efficiency of a fuel cell is						
	(A)	100%	(B)	69%			
	(C)	75%	(D)	7 83%			
	(E)	Answer not known					
180.	Energy produced due to gravitational force of attraction between earth and moon or sun and earth is						
	A	Tidal energy	(B)	Hydro energy			
	(C)	Wind energy	(D)	Geo thermal energy			
	(E)	Answer not known					
181.	The fugacity of liquid water at 303 K and 10 bar if the saturation pressure at 303 K is 4.241 KPa and specific volume of liquid water at 303 K is 1.004×10^{-3} m ³ /kg, is						
	(A)	0.9426 bar	(B)	0.9427 atm			
	(C)	0.0427 atm	(P)	0.0427 bar			
	(E)	Answer not known					
182.	The ratio of fugacity to pressure is referred to as						
	(A)	Partition coefficient	(B)	Activity coefficient			
	S	Fugacity coefficient	(D)	Coefficient of performance			
	(E)	Answer not known					

183.	1 kg of water at the top of a mountain of height about 426.8 m. At this position, water possesses a potential energy of nearly						
	(A)	41.87 KJ	(B) 41.87 J				
	(C)	4.187 J	4.187 KJ				
	(E)	Answer not known					
184.	The net heat evolved or absorbed in a chemical reaction is the same whether the reaction takes place in a single step or in a series of steps. This is known as						
	W.	Hess's Law	(B) Kirchoff's Law.				
	(C)	Lavoisier and Laplace Law	(D) Boyle's Law				
	(E)	Answer not known					
185.	·Fugacity has the unit of						
	(M)	Pressure	(B) Volume				
	(C)	Temperature	(D) Density				
	(E)	Answer not known					
186.	woul		property and the property that me temperature, pressure and called				
	(A)	Intrinsic property					
	(B)	Ideal chemical property					
	9	Excess property					
	(D)	Excess enthalpy of a solution					
	(E)	Answer not known					

187. Volume expansivity is

(A)
$$\beta = V \left(\frac{\partial V}{\partial T} \right)_P$$

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P}$$

(C)
$$\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$$

(D)
$$\frac{1}{V} \left(\frac{\partial T}{\partial P} \right)_V$$

- **(E)** Answer not known
- 188. The constants 'a' and 'b' of the Van der Waals equation $\left(P + \frac{a}{V^2}\right)(V - b) = RT \text{ are}$

(B)
$$a = \frac{27R^2T_c^2}{64P_c}$$
; $b = \frac{RT_c}{8P_c}$ (B) $a = \frac{RT_c}{8P_c}$; $b = \frac{27R^2T_c^2}{64P_c}$

(B)
$$a = \frac{RT_c}{8P_c}$$
; $b = \frac{27R^2T_c^2}{64P_c}$

(C)
$$a = \frac{64P_c}{27R^2T_c^2}$$
; $b = \frac{8P_c}{RT_c}$

(C)
$$a = \frac{64P_c}{27R^2T_c^2}$$
; $b = \frac{8P_c}{RT_c}$ (D) $a = \frac{8P_c}{RT_c}$; $b = \frac{64P_c}{27R^2T_c^2}$

- (E) Answer not known
- 189. The absolute entrophy of a perfectly ordered crystal at absolute zero temperature is

(B) Infinite

(C) Positive

- (D) Negative
- **(E)** Answer not known

- 190. The first law of thermodynamics takes the form $W = \Delta H$ when applied to
 - (A) A closed system undergoing a reversible adiabatic process
 - An open system undergoing an adiabatic process with negligible changes in kinetic and potential energies
 - (C) A closed system undergoing a reversible constant volume process
 - (D) A closed system undergoing a reversible constant pressure process
 - (E) Answer not known
- 191. At 318 K and 25 KPa, composition of the system A and B at equilibrium is $x_A = 0.3$ and $y_A = 0.6$. The saturation pressure at the given temperature for the pure components are $P_A^{sat} = 20$ KPa and $P_B^{Sat} = 10$ KPa respectively. The liquid-phase activity coefficient of component $A(r_A)$ will be
 - (A) 1

(B) 1.5

(C) 2.0

 $(P)^{2}.5$

- (E) Answer not known
- 192. There is no flow of heat between the system and the surroundings is known as ———— process.
 - (A) Isobaric

(B) Isochoric

Adiabatic

(D) Isothermal

(E) Answer not known

- 193. A gas can be considered to be an ideal one at conditions (in comparison to their critical values) of
 - (A) low T and low P

high T and low P

- (C) low T and high P
- (D) high T and high P
- (E) Answer not known
- 194. Choose the correct answer absolute pressure is expressed by
 - (A) $P_{abs} = P_{atm} P_{gauge}$

 $P_{abs} = P_{atm} + P_{gauge}$

- (C) $P_{abs} = P_{vacuum} + P_{atm}$
- (D) $P_{abs} = P_{vacuum} P_{atm}$
- (E) Answer not known
- 195. A cylinder contains 14.2 kg of liquid propane. What volume is litres will the propane occupy if it is released and brought to standard conditions? Take molecular weight of propane as 44.
 - (A) 14.2 lit

(B) 7.23 lit

(C) 7.23 cm^3

- $\sqrt{2}$ 7.23 m³
- (E) Answer not known
- 196. In a textile mill, a double-effect evaporator system concentrates weak liquor containing 4% (by mass) caustic soda to produce a lye containing 25% solids (by mass). The evaporation of water per 100 kg feed in the evaporator is
 - (A) 16 kg

(B) 84 kg

(C) 25 kg

- (D) 4 kg
- (E) Answer not known

197.		respect to			
	(A)	Pressure (B) Temperature			
	(C)	Volume Time			
	(E)	Answer not known			
198.	Yield	is defined as			
•		moles of desired product × stoichiometric factor			
		moles of specific reactant consumed			
	(B)	moles of specific reactant consumed × stoichiometric factor			
		moles of desired product			
	(C)	moles of the specific reactants consumed \times moles of desired product			
		stoichiometric factor			
•	(D)	moles of the specific reactant consumed			
		moles of desired product			
	(E)	Answer not known			
199.		capacity is the amount of heat required to ———————————————————————————————————			
		raise			
	(B)	decrease			
	(C)	increase (or) decrease			
	(D)	equalize			
	(E)	Answer not known			

- 200. Volume is directly proportional to temperature in
 - (A) Charle's Law
 - (B) Boyle's Law
 - (C) Gay-Lussac's Law
 - (D) Avogadro's Law
 - (E) Answer not known